Testing the diffusing boundary model for the helix-coil transition in peptides.
نویسندگان
چکیده
The dynamics of peptide α-helices have been studied extensively for many years, and the kinetic mechanism of the helix-coil dynamics has been discussed controversially. Recent experimental results have suggested that equilibrium helix-coil dynamics are governed by movement of the helix/coil boundary along the peptide chain, which leads to slower unfolding kinetics in the helix center compared with the helix ends and position-independent helix formation kinetics. We tested this diffusion of boundary model in helical peptides of different lengths by triplet-triplet energy transfer measurements and compared the data with simulations based on a kinetic linear Ising model. The results show that boundary diffusion in helical peptides can be described by a classical, Einstein-type, 1D diffusion process with a diffusion coefficient of 2.7⋅10(7) (amino acids)(2)/s or 6.1⋅10(-9) cm(2)/s. In helices with a length longer than about 40 aa, helix unfolding by coil nucleation in a helical region occurs frequently in addition to boundary diffusion. Boundary diffusion is slowed down by helix-stabilizing capping motifs at the helix ends in agreement with predictions from the kinetic linear Ising model. We further tested local and nonlocal effects of amino acid replacements on helix-coil dynamics. Single amino acid replacements locally affect folding and unfolding dynamics with a ϕf-value of 0.35, which shows that interactions leading to different helix propensities for different amino acids are already partially present in the transition state for helix formation. Nonlocal effects of amino acid replacements only influence helix unfolding (ϕf = 0) in agreement with a diffusing boundary mechanism.
منابع مشابه
On the Helix-Coil transition in grafted chains
– The helix-coil transition is modified by grafting to a surface. This modification is studied for short peptides capable of forming α-helices. Three factors are involved: (i) the grafting can induced change of the boundary free energy of the helical domain (ii) the van der Waals attraction between the helices and (iii) the crowding induced stretching of the coils. As a result the helix-coil tr...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملParameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water.
Thermal unfolding curves have been measured for a series of short alanine-based peptides that contain repeating sequences and varying chain lengths. Standard helix-coil theory successfully fits the observed transition curves, even for these short peptides. The results provide values for sigma, the helix nucleation constant, delta H0, the enthalpy change on helix formation, and for s (0 degree C...
متن کاملCoarse-Grained Model of Coil-to-Helix Kinetics Demonstrates the Importance of Multiple Nucleation Sites in Helix Folding.
An extension of a coarse-grained, implicit-solvent peptide model wherein each amino acid residue is represented by four interaction sites is presented and discussed. The model is used to study the coil-to-helix transition of five peptide sequences, ranging from all hydrophobic to all hydrophilic, for a 10-residue peptide. The thermodynamics of the folding transition are analyzed and discussed f...
متن کاملSecondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study
In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 32 شماره
صفحات -
تاریخ انتشار 2013